skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McCarthy, Michael C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 17, 2026
  2. Abstract Spectral line surveys of the Taurus Molecular Cloud-1 (TMC-1) have led to the detection of more than 100 new molecular species, making it the most prolific source of interstellar molecular discoveries. These wide-band, high-sensitivity line surveys have been enabled by advances in telescope and receiver technology, particularly at centimeter and millimeter wavelengths. In this work, we present a statistical analysis of the molecular inventory of TMC-1 as probed by the GOTHAM large program survey from 3.9 to 36.4 GHz. To fully unlock the potential of the ∼29 GHz spectral bandwidth, we developed an automated pipeline for data reduction and calibration. We applied a Bayesian approach with Markov Chain Monte Carlo fitting to the calibrated spectra and constrained column densities for 102 molecular species detected in TMC-1, including 75 main isotopic species, 20 carbon-13 substituted species, and seven deuterium-substituted species. This list of the detected gas-phase molecules is populated by unsaturated hydrocarbons, in stark contrast to the oxygen-rich organics found in sublimated ices around protostars. Of note, 10 individual aromatic molecules were identified in the GOTHAM observations, contributing 0.011% of the gas-phase carbon budget probed by detected molecules when including CO and 6% when excluding CO. This work provides a reference set of observed gas-phase molecular abundances for interstellar clouds, offering a new benchmark for astrochemical theoretical models. 
    more » « less
    Free, publicly-accessible full text available October 23, 2026
  3. We report the hyperfine-resolved rotational spectrum of the gas-phase phenoxy radical in the 8−25 GHz frequency range using cavity Fourier transform microwave spectroscopy. A complete assignment of its complex but well-resolved fine and hyperfine splittings yielded a precisely determined set of rotational constants, spin-rotation parameters, and nuclear hyperfine coupling constants. These results are interpreted with support from high-level quantum chemical calculations to gain detailed insight into the distribution of the unpaired π electron in this prototypical resonance-stabilized radical. The accurate laboratory rest frequencies enable studies of the chemistry of phenoxy in both the laboratory and space. The prospects of extending the present experimental and theoretical techniques to investigate the rotational spectra of isotopic variants and structural isomers of phenoxy and other important gas-phase radical intermediates that are yet undetected at radio wavelengths are discussed. 
    more » « less
  4. Abstract We used new high spectral resolution observations of propynal (HCCCHO) toward TMC-1 and in the laboratory to update the spectral line catalog available for transitions of HCCCHO—specifically at frequencies lower than 30 GHz, which were previously discrepant in a publicly available catalog. The observed astronomical frequencies provided a high enough spectral resolution that, when combined with high-resolution (∼2 kHz) measurements taken in the laboratory, a new, consistent fit to both the laboratory and astronomical data was achieved. Now with a nearly exact (<1 kHz) frequency match to theJ= 2–1 and 3–2 transitions in the astronomical data, using a Markov Chain Monte Carlo analysis, a best fit to the total HCCCHO column density of 7.28 1.94 + 4.08 × 10 12 cm−2was found with a surprisingly low excitation temperature of just over 3 K. This column density is around a factor of 5 times larger than reported in previous studies. Finally, this work highlights that care is needed when using publicly available spectral catalogs to characterize astronomical spectra. The availability of these catalogs is essential to the success of modern astronomical facilities and will only become more important as the next generation of facilities comes online. 
    more » « less
  5. Recent advances in circumstellar metal chemistry and laser-coolable molecules have spurred interest in the spectroscopy and electronic properties of alkaline earth metal-bearing polyatomic molecules. We report the microwave rotational spectra of two members of this important chemical family, the linear magnesium- carbon chains MgC4H and MgC3N, detected with cavity Fourier transform microwave spectroscopy of a laser ablation-electric discharge expansion. The rotation, fine, and hyperfine parameters have been derived from the precise laboratory rest frequencies. These experimental results, combined with a theoretical quantum chemical analysis, confirm the recent identification of MgC4H and MgC3N in the circumstellar envelope of the evolved carbon-rich star IRC+10216. The spectroscopic data also provide insight into the structural and electronic properties that influence the metal-based optical cycling center in this unique class of laser-coolable polyatomics. 
    more » « less
  6. We report the hyperfine-resolved rotational spectrum of gas-phase phenoxy radical in the 8–25 GHz frequency range using cavity Fourier transform microwave spectroscopy. A complete assignment of its complex but well-resolved fine and hyperfine splittings has yielded a precisely determined set of rotational constants, spin-rotation parameters, and nuclear hyperfine coupling constants. These results are interpreted with support from high-level quantum chemical calculations to gain detailed insight into the distribution of the unpaired π electron in this prototypical resonance-stabilized radical. The accurate laboratory rest frequencies enable studies of the chemistry of phenoxy in both the laboratory and in space. The prospects of extending the present experimental and theoretical techniques to investigate the rotational spectra of isotopic variants and structural isomers of phenoxy and other important gas-phase radical intermediates yet undetected at radio wavelengths are discussed. 
    more » « less
  7. Free, publicly-accessible full text available February 1, 2026
  8. Abstract We present the spectroscopic characterization of cyclopropenethione in the laboratory and detect it in space using the Green Bank Telescope Observations of TMC-1: Hunting Aromatic Molecules survey. The detection of this molecule—the missing link in understanding the C3H2S isomeric family in TMC-1—completes the detection of all three low-energy isomers of C3H2S, as both CH2CCS and HCCCHS have been previously detected in this source. The total column density of this molecule (NTof 5.7 2 1.61 + 2.65 × 1 0 10 cm−2at an excitation temperature of 4 . 7 1.1 + 1.3 K) is smaller than both CH2CCS and HCCCHS and follows nicely the relative dipole principle (RDP), a kinetic rule of thumb for predicting isomer abundances that suggests that, all other chemistry among a family of isomers being the same, the member with the smallest dipole (μ) should be the most abundant. The RDP now holds for the astronomical abundance ratios of both the S-bearing and O-bearing counterparts observed in TMC-1; however, CH2CCO continues to elude detection in any astronomical source. 
    more » « less
    Free, publicly-accessible full text available March 28, 2026
  9. Abstract We present the synthesis and laboratory rotational spectroscopy of the seven-ring polycyclic aromatic hydrocarbon (PAH) cyanocoronene (C24H11CN) using a laser-ablation-assisted cavity-enhanced Fourier transform microwave spectrometer. A total of 71 transitions were measured and assigned between 6.8 and 10.6 GHz. Using these assignments, we searched for emission from cyanocoronene in the Green Bank Telescope (GBT) Observations of TMC-1: Hunting Aromatic Molecules project observations of the cold dark molecular cloud TMC-1 using the 100 m GBT. We detect a number of individually resolved transitions in ultrasensitiveX-band observations and perform a Markov Chain Monte Carlo analysis to derive best-fit parameters, including a total column density of N ( C 24 H 11 CN ) = 2.6 9 0.23 + 0.26 × 1 0 12 cm 2 at a temperature of 6.0 5 0.37 + 0.38 K. A spectral stacking and matched filtering analysis provides a robust 17.3σsignificance to the overall detection. The derived column density is comparable to that of cyano-substituted naphthalene, acenaphthylene, and pyrene, defying the trend of decreasing abundance with increasing molecular size and complexity found for carbon chains. We discuss the implications of the detection for our understanding of interstellar PAH chemistry and highlight major open questions and next steps. 
    more » « less
    Free, publicly-accessible full text available April 30, 2026